skip to main content


Search for: All records

Creators/Authors contains: "Noël, Brice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a novel method to estimate dynamic ice loss of Greenland's three largest outlet glaciers: Jakobshavn Isbræ, Kangerlussuaq Glacier, and Helheim Glacier. We use Global Navigation Satellite System (GNSS) stations attached to bedrock to measure elastic displacements of the solid Earth caused by dynamic thinning near the glacier terminus. When we compare our results with discharge, we find a time lag between glacier speedup/slowdown and onset of dynamic thinning/thickening. Our results show that dynamic thinning/thickening on Jakobshavn Isbræ occurs 0.87 ± 0.07 years before speedup/slowdown. This implies that using GNSS time series we are able to predict speedup/slowdown of Jakobshavn Isbræ by up to 10.4 months. For Kangerlussuaq Glacier the lag between thinning/thickening and speedup/slowdown is 0.37 ± 0.17 years (4.4 months). Our methodology and results could be important for studies that attempt to model and understand mechanisms controlling short‐term dynamic fluctuations of outlet glaciers in Greenland.

     
    more » « less
  2. The response of the Greenland Ice Sheet (GrIS) to a warmer climate is uncertain on long time scales. Climate models, such as those participating in the Coupled Model Intercomparison Project phase 6 (CMIP6), are used to assess this uncertainty. The Community Earth System Model version 2.1 (CESM2) is a CMIP6 model capable of running climate simulations with either one‐way coupling (fixed ice sheet geometry) or two‐way coupling (dynamic geometry) to the GrIS. The model features prognostic snow albedo, online downscaling using elevation classes, and a firn pack to refreeze percolating melt water. Here we evaluate the representation of the GrIS surface energy balance and surface mass balance in CESM2 at 1° resolution with fixed GrIS geometry. CESM2 agrees closely with ERA‐Interim reanalysis data for key controls on GrIS SMB: surface pressure, sea ice extent, 500 hPa geopotential height, wind speed, and 700 hPa air temperature. Cloudsat‐CALIPSO data show that supercooled liquid‐containing clouds are adequately represented, whereas comparisons to Moderate Resolution Imaging Spectroradiometer and CM SAF Cloud, Albedo, and Surface Radiation data set from Advanced Very High Resolution Radiometer data second edition data suggest that CESM2 underestimates surface albedo. The seasonal cycle and spatial patterns of surface energy balance and surface mass balance components in CESM2 agree well with regional climate model RACMO2.3p2, with GrIS‐integrated melt, refreezing, and runoff bracketed by RACMO2 counterparts at 11 and 1 km. Time series of melt, runoff, and SMB show a break point around 1990, similar to RACMO2. These results suggest that GrIS SMB is realistic in CESM2, which adds confidence to coupled ice sheet‐climate experiments that aim to assess the GrIS contribution to future sea level rise.

     
    more » « less